Data Driven Material Modeling

2016  Bader, C., Kolb, D., Weaver, J., and Oxman, N., Journal of 3D Printing and Additive Manufacturing, Volume 3, Number 2, 2016, Pp. 71-79

ABSTRACT

We present a data-driven approach for the creation of high-resolution, geometrically complex, and materially heterogeneous 3D printed objects at product scale. Titled Data-driven Material Modeling (DdMM), this approach utilizes external and user-generated data sets for the evaluation of heterogeneous material distributions during slice generation, thereby enabling the production of voxel-matrices describing material distributions for bitmap-printing at the 3D printer’s native voxel resolution. A bitmap-slicing framework designed to inform material property distribution in concert with slice generation is demonstrated. In contrast to existing approaches, this framework emphasizes the ability to integrate multiple geometry-based data sources to achieve high levels of control for applications in a wide variety of design scenarios. As a proof of concept, we present a case study for DdMM using functional advection, and we demonstrate how multiple data sources used by the slicing framework are implemented to control material property distributions.

Download
Data Driven Material Modeling

« Previous     Next »